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Summary By introducing a Gaussian factor to describe the fact that the nuclei in
H, vibrate around a fixed point, we have modified the method of hyperspherical
harmonics recently proposed by us. The modlﬁed method has been applied to solve
the three-body Schrodinger equation for Hj directly without recourse to the
Born-Oppenheimer approximation and the calculations yield well- converged
ground-state energies. These are the first-reported results obtained for H) by the
method of hyperspherical harmonics. With 25 hyperspherical harmonics and 40
generalized-Laguerre functions, we obtain a ground-state energy of —0.5945 au,
which is close to the exact value of —0.5971 au. A detailed presentation of the
method of modified hyperspherical harmonics is presented.

Key words Three-body problem — Hyperspherical coordinate — Schrédinger equa-
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1. Introduction

Recently, Deng et al. [1, 2] have proposed a direct method to solve the many-body
Schradinger equation in the hyperspherical formalism. We tested this method for
the atomic system He [1,2] and the mesomolecular system of e*e”e*, ppy, etc.
[3], and we concluded [3] that the method is one of the best availableé hyper-
sphcrlcal harmonic (HH) methods. However, when we tried to extend the method
to the H; system, we encountered a slow convergence and could not get meaning-
ful results for the size of basis sets we used.

In the past, efforts to perform direct calculations on H; using the HH method
have been made by several authors [4-6], but they all failed. The first effort was
made in 1974 by Whitten and Sims [4] who encountered serious convergence
difficulties and did not obtain any result. In 1981, Mignaco and Roditi [5] tried to
extend their HH method to H5 , but reported no results. Using his HH method,
Burden [6] in 1983 performed some calculations on the hypothetical systems XY,
with mass ratios ranging from 1 to 256, and explored the limitations of the method
of hyperspherical harmonics. He found that, when the mass ratio was greater than
256, the necessary basis set increased so rapidly that computer storage and time
requirements became prohibitive. He, too, failed to complete the direct calculation
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on H2 Thus, the slow convergence has been a common problem in all calculations
of H; by various methods based on hyperspherical harmonics.

We believe that this slow convergence problem may result from the fact that the
two protons in H5 vibrate around their equilibrium posmon and that this kind of
behaviour is difficult to describe by HH and GLF expansions. On the other hand, we
know that Gaussian functions can be used to describe such ground-state vibration
of heavy particles. Hence, we decided to express the wavefunction as a product of
two factors, ¥ = Q®, where Q is a Gaussian function. Then, the remaining part
& may be of such a form that can be easily simulated by an expansion in terms of
HH and GLF functions. The idea of correlation function [ 7, 8] was first introduced
into the HH theory by Gorbatov et al. [7] and Haftel and Mandelzweig [8], and
the Gaussian function Q can be regarded as a kind of correlation function.

Programs based on our modified method have been carried out successfully on
H; . In the next section we give a detailed description of this method and
quantitative results are reported in the third section.

2. Theory

The nonrelativistic Schodinger equation for the H; system can be written as
3
{—% Y Viimi+ V—E}‘P=0, 1)
i=1

where atomic units are used, V is the interaction potential and m; is the mass of the
ith particle.

In the process of developing hyperspherical harmonic theory, several co-
ordinate representations [9—14] have been established. Of these the symmetric
representations are very convenient for the treatment of the three-body problem.
We follow the symmetric representation formalism introduced by Niri [9] and
Mandelzweig [10].

In the centre-of-mass system, Eq. (2.1) becomes

{—3(V}+V:)+V-E}¥ =0, (2.2)
&§=2712(r\ — 1)),
& = [(M/)/(M + 212 (ry + 1y — 2r3), (2.3)

where we used the units m = h = ¢ = 1; m and M are the masses of protons and
electrons respectively; r/ is the position vector of the ith particle. Let (for L = 0),

&1 = —pcos[(n/4) — (a/2)] cos(3/2),
&2 = psin[(n/4) — (a/2)] sin (4/2),

63 = Os
&1 = —pcos ([7/4) — (a/2)] sin(4/2),
&2 = —psin[(n/4) — (a/2)] cos (4/2),

¢ =0, 24

with p (0 < p < o0 being the hyperradial variable and a (0 <a <m/2) and
A (0 < A < 2n) being two hyperangles.
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Then, Eq. (2.2) can be written in terms of hyperspherical coordinates as follows:
(4[6%/0p* + (5/p)0Jop — A*/p*] =V + E} ¥ =0 (2.5)

for L =0,
A% = —4(8%*/8a® + 2 cot 2ad/da + (1/sin? a) ?/9A?), (2.6)

where A2 is the generalized scalar angular-momentum operator.
The interparticle distances of particles j and k can also be expressed by p, a
and A,

r: = p[x;(1 + sinacos (1 + w;))]1'72, (V)]

where x;=1, (M +1)2M, (M +1)2M, 0;,=0,0, —®w with © = arccos
(—1/(M + 1)), for i = 3, 1 and 2, respectively. Particles 1 and 2 correspond to two
protons, and r; corresponds to the distance between them.

We introduce the Gaussian factor Q and g, the exponential of a linear function
of r, and r,, to express ¥ as follows:

¥ = Qyd, (2.8)
with
Q — a3 —pr3
r=e’ 2.9)
2
f= —_ Z tX(,‘)ri, (210)
i=1

where the o, (i = 1, 3), B are determined by the following physical considerations.

When elliptic coordinates are used, we can get the exact wavefunction of H;
in the Born-Oppenheimer approximation, part of which has the form of
g~ 0741601 +r) gt the equilibrium distance between the two nuclei. Hence, we find
Oy = O2) = 07416(161 (let Oy =0y = (X).

B and a3, are estimated from the approximate wavefunction of the ground-
state vibration of the two nuclei, which can be obtained from the Schrédinger
equation describing the motion of the nuclei of Hy . We deduce 8 = (2r%uv,)/h
= 480(;2, O3y = 192(10_1

Substituting Eq. (2.8) into Eq. (2.5), and carrying out the derivations, we finally
arrive at an equation of the following form:

[6%/8p* + (5/p) 8/dp — A%/p* + 2(E — V) + W1 + W28/dp
+ W3/p + Wapd/op + W5p* + Wép + Wipl®d =0 (2.11)

where V= —Z/p; Z, W1, W2, W3, W4, W5, W6, W1p are operators which are
only related to two hyperangles 4 and a.
& can now be expanded in terms of hyperspherical harmonic (HH) basis sets

(Yu,v 4, a)
&= 0,,(p) V(% 0). @12)

Here, Y, , (4, a) are solutions (for the S states) of the equation
A2y =K(K + Hy (2.13)
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with the global quantum number K =0, 2,4, ..., and thus can be expressed in
terms of the usual Wigner D functions (Dj. (@, f, 7)).

The Pauli exclusion principle requires that the wavefunction be antisymmetric
under interchange of two idential particles (protons), so Y,,, (4, a) should be of the
form

DY2_ 2 (24,2a,0) + (—1*" D2, |, (24.24,0). (2.14)

In the space spanned by HH basis sets, Eq. (2.11) yields the matrix equation
[d%/dp* + (5/p)d/dp — K(K + 4)/p? + 2E + 2Z/p + W1h

+ W2(d/dp) + W3/p + W4pd/dp + W5p* + W6p]®d =0, (2.15)

Wih=WI1 + Wip, (2.16)

where @ is the N x 1 column matrix; K is the N x N generalized angular-mo-
mentum eigenvalue diagonal matrix, Z, W1, W2, W3, W4, W5, W6, Wilp are N x N
matrices; N is the dimension of the HH basis. By somewhat complicated deriva-
tions, we have obtained analytic expressions (see the Appendix) for all matrix
elements (including Z, W1, W2, W3, W4, W5, W6, W1p), which are used in practi-
cal calculations.

Equation (2.15) is a set of coupled hyperradial differential equations, which
can be solved by the GLF (generalized-Laguerre function) expansion method as
follows.

We expand @ in terms of a complete set of GLF functions,

®(p) = i L), @.17)

where C, is the column matrix of expansion coefficients, L} (p) are the generalized-
Laguerre functions and we choose o = 4. Then Eq. (2.15) becomes

f C,[d%/dp? + (5/p)d/dp — K(K + 4)/p* + 2E + W1h
n=0

+ W2(d/dp) + (2Z + W3)/p + Wdpd/dp + W5p* + W6p]Li(p) =0. (2.18)
Taking into account that
[d*/dp? +(5/p — 1)d/dp + n/p] Ly (p) = O, (2.19)
we can simplify Eq. (2.18) to

o

Y C,[ —K(K + 4)/p* + 2E + Wik + (W2 + 1)(d/dp)
n=0

+(2Z + W3 —n)/p] L3 (p)
+ Y C,[W4pd/dp + W5p> + W6p]Li(p) =0. (2.20)
n=0
Applying furthermore the following formulae several times,
pL = —(n+HL}_, + 2n + 5Lt —(n+ )LE, 2.21)
p(d/dp) Ly = nLy —(n +4L3_,, (2.22)
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we finally get, from Eq. (2.20), the following recurrence relations for the coefficient
matrix:

a(C,)C, + a(Cpr1) o1 + @(Co—1)Cy—y + a(Cpi3)Cpiz + a(Cp-3)Cy -5
+a(Ch+3)Cris +a(Ch-3)Co3 + a(Cur4) Cris + a(Cy-4) Cy— s = 0,(2.23)
where
a(C))=—KEK+4)+22n+5Z+ 6(n*+5n+5Wih
+3nn+3yW2+(2n+ S)W3
+n(n+4)+ 6(n* + 5n+ 5)2E
+ USm)W5 + 14(n) W6 + lkd(n) W4,
a(Cpi1)=—(n+52Z—-4n+3)n+SYWIh —3(n+2(n+ 55W2—(n+ 5 W3
—(n+ 5)2n + 5) —4(n + 3)(n + 5)2E
+14n+1)W5+Bmn+ 1)W6 + Ik3(n + 1) W4,
a(Chp-1)= —2nZ —4(n + 2)nWih —n(n — YW2 — nW3 — 4n(n + 2)2E
+U6(n— 1)W5 + I5(n — 1) W6 + Ik5(n — 1) W4,
a(Cpirz)=(m+5mn+ 6)(Wlh+ W2 + 1 + 2E)
+1Bn+2)W5 +2(n+2)W6 + lk2(n + 2) W4,
a(C,-,) = (n — )n(WIh + 2E) + IlT(n — ) W5
+ 16(n — 2)W6 + lk6(n — 2) W4,
a(Coi3)=12Mn+3)W5+11(n+3)W6 + lkl(n + 3) W4,
a(Cy_3)=U8(n —3)W5 + 17(n — 3} W6,
a(Cpia)=l1(n+ HWS5,
a(C,-4) =19 — 4 W5. (2.24)

Additionally, li(j) (i =1,7), tki(j) (i =1, 6) and li(j) (i =1, 9) are functions in
terms of an integral variable j which are defined by us and have the following
definitions:

N =-0G+23G+3)0+4),

2(7)=32+3)(G+33G+9),

13(j)= —(152 + 60j + 51) (j + 4),
M(j)=2(57+2Tj+25)+20G+2 G+ D (+4),
15()=—3(5*+30+42) (j + 1),
6(N=3@G+N0G+DHG+2,
MTH=-0G+20G+3)0(+1), (2:25)
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k1()=-0G+20G+33G+4
k2(N=G+4H0G+3)0(+49),
k3 (j) = —(10/% + 26j + 6) (j + 4),
Ik4 (j) = 2j (5% + 27j + 31),
k5()=—j(+1) & +16),
k6 (j)=j(i+2)(G+1), (2.26)
nmaG=-G+1yuQ)
RMO=@G-npnH-G+220)
BG)=-G-d0(N+&G+YRG)-G+3)BOU)
MG=—-0G-DR2G+@G+3IBGH -G+ 10U,
U5(j)= =BG+ @+ 5 13G) -G+ 3550
6 (j)=—-G+DBGN+@+DEG) -G +6)160),
M@G)=-0G+2d5(N+@+916()—-0G+7N1))
B()=—0G+3)160()+ @+ 11)17()j)

mGy=—-G+49173). (2.27)
From Eq. (2.23), one obtains the generalized eigenvalue equation
AC = 2EBC, (2.28)

where C is the M x 1 column matrix; A, B are M x M square matrices; M = NHH
(the number of HH)x NGLF (the number of GLF). Equation (2.28) is solved
numerically and thereby the wavefunction and the energy eigenvalue are obtained.

3. Calculations and results

We have performed explicit calculations for H; with the method described above.
All calculations were executed on a 4D/25 Personal Iris SiliconGraphics work-
station in our laboratory. The programs were written by us. Analytic expressions
were used for the calculation of all matrix elements involved. Some of them proved
to be very time-consuming (up to a few thousand minutes of CPU).

In view of the storage limitations of our workstation and the CPU time
required, the maximum basis set we used was 25 HHs and 40 GLFs.

Some of our quantitative results for the ground-state energies of Hz are
displayed in Table 1. The convergence pattern of the ground-state energles is seen
to be rather good. Compared with our previous direct calculations on He,e*e"e*
ppu [1-3], more GLFs are required to obtain good convergence. With 25 HHs and
40 GLFs, we obtain a ground-state energy of —0.5945 au, quite close to the exact
value of —0.5971 au [15]. By contrast, using the HH-GLF method with 100 HHs
and 9 GLFs but without a Gaussian function, we only obtained —0.0317 au for
the ground-state energy. Thus, application of our modified method to H; yields
significant improvements of the rate of convergence. Further precise calculations
with larger basis sets on H3 are in progress.
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Table 1. Energy eigenvalues of the ground state for H5 (au)

NGLF

K, NHH 10 20 30 35 40

4 4 —0.33297 —0.48397 —0.49528 —0.49528 —0.49528

8 9 —0.45274 —0.55011 —0.55608 —0.55641 —~0.55635
12 16 —0.50621 —0.57327 —0.58100 —0.58237 —0.58268
14 20 —0.52347 —0.57685 —0.58704 —0.58924 —0.59012
16 25 —0.53720 —0.58116 —0.58974 —0.59273 —0.59449
Exact value® —0.59714

NHH: the number of hyperspherical harmonics; NGLF: the number of generalized-Laguerre functions.
K,,: the maximum global angular momentum
* From [15]
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Appendix

The obtained analytic expressions for matrix elements of Z, W1, W2, W3, Wlp, W4,
W5, W6 are given as follows:

Zuvu’v’ = —4/1E [2 (ﬂ, + 1) (2 - 5vo) (2 - 5v’n)/(/“' + 1)]1/2
(utp")
(=Dervreeniz 5T (0" + /I + 1) @1 + 3)]
"’ =|lp—p'|
[tv—v’ (ﬂ’/2s V’/2, :u”/2: (V - v’)/zlu/z’ V/2)2
F (=1 tav ()2, =V'/2, 1'/2, (0 + V2| /2, ¥/2)], (A1)

where the (I', m', I”, m”| I, m) are the Clebsch—Gordan coefficients of the su(2) group,
and

t, =1 — (2z/ky*) cosw v (z is atomic number). (A.2)
W2 =32/m [2( + 1) (2= 8,0) (2 — dyo)/(n + 1)]V2 (=) HrTeemi2
(ntu’)
L DLW 9 i+ 3) @i+ 1) 2= 1]
B o=lu—u
Lot— v (12, v'/2, 1"/2, (v — v')2| 12, v/2)?
+ (= 1Y oyuu ()2, =V'/2, 1'/2, (v + V')2| /2, ¥/2)], (A.3)

where

o, = o) + 20k, coswv. (A4)
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W3uvu' y = 16/‘“7 [2 (ﬂl + 1) (2 - avo) (2 - 5"’0)/(” + 1)]1/2 ( _1)(ul+v’+ﬂ+")/2
(utp’)
Y+ I+ 3w+ 1]
W=lp—p

{oty=y (]2, /2, 1"/2, (v = V')/2| /2, ¥/2)
x {()2, V)2, 112, (v — V)21 /2, v/2) + 4/[2u" + 5) Qu’ — 1)]

1
x Y, [agy @y (W/2,V/2 =y (/2 (v = V)/2 + o] /2, v/2)

a=—1
+a,ty apy oy (W2 V24 o p"/2, (v = V)2 — | 12, v/2)1}
+ (= ayey ()2, =2, 1'/2, (v + V)21 /2, V/2)
{2, =v/2, 1/2, v + V2|02, v/2) + 420" + 5) 20" — 1)]
1
X Y (855 Gy ()2 —V/2+ 0 )2, 0+ VY2 = al 2, 9/2)
a=~—1

+ [a;’tv' a;”—-(v+v’)(ﬂ’/2a —-V’/2 — ”’,/2, (V + vl)/z + alﬂ/za V/2)]}},

(A.5)
where
=G a4 DT, o b1 4.9
WLy = ST L + 1) @ = 8,0) (2 = 8,0+ DIV (— s+ w402
© By (g + p) (¥ + p3)
>

#1=0 V== py =gy —pf gy = — pal
x(p + D/[2ps + 5) Quy + 3) Quy + 1) 2py — 1)]

X (2 + /IQ2p2 + 5) Qpz + 3) 2py + 1) 2z — 1)]

X {aty, Oy ey, —v (12/2, (v = Vi = V)2, 1/2,V'[2| p3/2, (v — v1)/2)
X (B3/2, (v = vi)/2, ma/2, v1/2| /2, v/2)

[(pa/2, (v = vi = VY2, ()2, V2| p3f2, (v — v1)/2)

X (pa/2, (v = v1)/2, p1/2, v1/2| p/2, v/2)

1
—4 Y apa e (Haf2, (v — vy — V)2
1

— o, /2, V/2| t3/2, (v — v1)/2 — o)

X (pa/2, (v = v1)/2 — o, p1/2, v1/2 + | /2, v/2)]

+ oy, Oy, (H2/2, (O =V = v1)/2, )2, =V /2| p3/2, — (¥ +1)/2)
X(p3/2, = (v + v1)/2, 1/2, v1/2| 4/2, —v/2)
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[(u2/2, O — v —vi)/2, f/2, —V'[2|ps/2, — (v +v1)/2)
X(p3/2, — (v +v1)/2, 14/2, v1/2\ /2, —v/2)

—4 Z aunn azv -y vl(ﬂ2/2 (V —v-v1)/2-—oz [1/2

a=—1
—V/2|t3/2, (v + v1}/2 — o)

X(paf2, — (vi + V)2 — o, 412, v1/2 + a| /2, — v/2)]
(=D, gy, —v (Baf2, — v+ v + V)2, /2,
V2 p3/2 — (v + v1)/2)

X(pa/2, —(v +v1)/2, u1/2,v1/2| p/2, —v[2)

[(2/2, = +v1 + VY2, 10/2,V 2| pa/2, —(v + v1)/2)
X (pa/2, —(v + vi)/2, p1/2,v1/2| 12, —v/2)

—4 Z By vy By =y =y, (2/2,(—V =1 —V')/2

a=-1

— o, {f2, —V[2|ps/2, — (v +v1)2 — o)
X(paf2, — (v +v1)/2 — o, p1/2, v1/2 + o] /2, ~v/2)]
+ (=1, dy ey iy (H2/2, +(v — v + V)2, 1/2,
—V/2|u3/2, +(v = v1)/2)

X(pa/2, (v = v1)/2, pa/2, +1/2| /2, +v/2)
Cua/2, v — v + V)2, 1/2, —V/[2|p3/2, (v = v1)/2)
X(#a/2, (v — v1)/2, /2, v1/2| 02, ¥/2)

—4 Z Buvy By Sy, (H2/2, (0 + V' =)/

g=-1

2— o, ”’/2’ “'V'/zlﬂs/zs (V - V1)/2 - Oﬂ)
X (ps/2, (v = v1)/2 — o, /2, v1/2 + o] p/2, v/2)1} (A7)

Wip = Wipl + Wlip2. (A.8)
1
Wlpluvu’v' = zﬁ[(ﬂ, + 1) (2 - 5\!0) (2 - év'o)/(” + 1)}1[2 Z

g=—1

{ovv[a,5 ag,v—y (W/2,v//2,0, (v — v)/2| /2, v/2)
x{W/2,v[2 — o, 0,(v —v)/2 + | u/2, v/2)

+a,.%, a5, (H/2,v'(2,0,(v — v')/2} /2, v/2)
X(Wi2,v'[2+0a,0,(v —v')/2 — a| /2, v/2)]

+ 8y -y L85 a0, e ory (W12, —V/2,0,(v +V')/2| /2, v/2)



144 W. Bian, C. Deng

x(W/2, =v'[2+a,0,(v +v')/2 — a| /2, v/2)
+ a0, 80,y 4, (]2, —V/2,0,(v +v)/2| /2, v/2)
x(Wf2, —v'[2 —0,0,(v + v)/2 + a| p/2, v/2)] x (—1)**"
+ ©Gvv+1 —0y,v-1) [ay5ai,,-y)
X(W/2,V/2,1/2,(v = v')/2[ /2, v/2)
X(W/2, v /2 —a,1/2,(v —v')/2 + o| p/2,v/2)
+a,tyal,y— (W/2v2,1/2, (v —v')/2| /2, v/2)
X(W/2,V/2 + o, 1/2,(v — V)2 — | /2, v/2)]] x (= 1) ¥ 71+ D722
+0-vri1 = by v 1) [apSial v (42, —V/2,
1/2,(v + v')/2| w2, v/2)
x(W/2,v[2 —a, 1/2,(v — v')/2 — a| u/2, v/2)
+auty al ey (W2, =2, 172,00 +v')/2| /2, v/2)
x (W2, =v[2 —o,1/2,(v + v)/2 + a| /2, v/2)]
X (=1 (=1t bz, (A9)
Wip2,,,v = —6B[(2—dy,) 2 —6,0)]1"?
[Syw (1/2,V'/2,0, (v — v)/2| u/2, v/2)?
+ 0y, —y (112, —=V'/2,0,(v + v')/2| /2, v/2)* (—1F*"]. (A.10)
Wayvuv = =281 + 1)(2 = d,0) 2 = dvo)/(p + 1)]?
[0vv (1/2,v'/2,0, (v = v')/2| /2, v/2)*
+ 0y, v (]2, =V/2,0,(v +v')/2] /2, v/2)* (= 1F**
+ Svv a1 (W/2,V/2, 12, (v — v')/2] /2, v/2)* (= 1) 7# T DI2/2
+ Bumymr (B2 =V[2, 12, (0 + V2] /2,
V22 (—1pTY (=)W mer iz
=0y, =1 (/2,V/2,1/2, (v = V')/2| /2, v/2)* (= 1) W 7#F D122
—0v1-v (W12, —V'/2,1/2,(v +v)/2| /2, v/2)?
(=1p*r (=1wmerue]. (A.11)
W5,y =f4cg (0,0,0,0) + (21/2/4) facg(0, 0, 1, 1) — (2'/%/4) f4cg(0,0, 1, —1)
+ (2'2/4) facg (1, 1,0, 0) + (1/8) fAcg(1,1,1, 1) — (1/8) fdcg (1,1,1, —1)
—(2Y%/4) facg (1, —1,0,0) — (1/8) facg (1, —1,1, 1) + (1/8) fAcg (1, —1,1, —1),
(A.12)
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where
Jheg (p1,v1, pa, v2) = BPLGH + D) (1 + D (2 + D2 — 600) 2 — &)+ 1)1

X ( - 1)(ﬂ1+ﬂ2+!‘"#)/2
S (B (2 vl KV 2 2 O 1))
=g —ml
X (3/2, (v = v1)/2, p1/2,v1/2| 12, v/2)
[(r2/2, v2/2, 1/2,V'[2| pa/2, (v — v1)/2)
x (p3/2, (v — v1)/2, pa/2,v1/2| /2, v/2)

i
— Y auy, G, (12/2,V2/2 — 0, 12, V(2] paf2,(v — v1)/2 — a)
1

X (p3/2,(v —v1)/2 — o, pa/2, v4/2 + | /2, v/2)]

(=0 8y v, v, (12/2,V2/2, )2 — V2| pa/2, — (v + v1)/2)
X (pa/2, — (v + v1)/2, pa/2,v1/2112, —/2)
[(a/2, v2/2, 112, —V'[2| p3f2, — (v + v1)/2)
X(p3/2, — (v + v1)/2, pa/2,v1/2,| /2, —v/2)

1
— Y an a5y, (H2f2,v2/2 — o, 1)2, —V'[2| paf2, — (vy + V)/2 — a)

a=—1

X(H3/2 = (Vi + V)2 — o, /2, v1/2 + | 12, —V/2)]
F (=100 mv oo, (2/2,v2/2, 12, V(2| p3/2, — (v + v1)/2)
X (3/2, = (v + v1)/2, pa/2,v1/2| 12, —v/2)
[na/2,v2/2, 0/2, V)2 p3/2, — (v + v1)/2)
X (u3/2, — (v + v1)/2, p1/2,v1/2| p/2, — v/2)

1
— 2 G, G, (H2/2,2/2 — 0, (/2,V2| p3f2, — (v + v1)/2 — )
1

a= —

X(p3/2 — (v +v1)/2 — o, 11/2,v1/2 + | /2, —v/2)]
F (=1 8oyt —v (H2/2,V2/2, W2, —V/2,| 1a/2, (v = v1)/2)
X (a2, (v — v1)/2, p1/2,v1/2| p/2,v/2)
[(u2/2,v2/2, 1/2, —V/2| p3/2, (v — v1)/2)
X (p3/2, (v — v1)/2, 11/2,v4/2| /2, v/2)

1
- Z azlv, au_za\‘;z (12/2,v22 — o, /2, —V'[2| paf2, (v — v4)/2 — o)
=1

X (H3/2, (v — v1)/2 — o, p1/2,v1/2 + o] p/2, v/2)1} (A.13)
W6,,uy = fAcgp (0,0) + (2'/2/4) fAcgp (1,1) — (2'/2/4) fhegp (1, —1), (A.14)
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where

fAegp (2, v2) = =32B/m [2(4' + 1) (42 + 1) (2 = 630) (2 — Byro)f(pe + DIV
x(—1)pt+ =2

(e tu’) (u3tu)

3 G+ D/IC + 3 G + 9@+ D@ — 1]

Py =y — ) gy = s —p) 1=~
x(=1)"""2aq,
{Ov,vitvatw (H2/2,v2/2, W2, V')2] paf2, (v — v1)/2)
X(p3/2, (v — v1)/2, p1/2,v1/2| /2, v/2)
[(u2/2,v2/2, K12, V'/2| paf2, (v — v1)/2)
X (pa/2, (v = v1)/2, 11/2,v1/2| 12, v/2)
-2 21: By, G, (H2/2,V2/2 — o W/2,V/[2 paf2, (v — v1)/2 — )

a=-—1

X (Ua/2, +(v —v1)/2 —a, u1/2,v/2 + o} u/2, v/2)]
F (=1 0y vmn —v, (B2/2, V22, (12, V2| pa/2, — (v + v1)/2)

X (p3/2, — (v +v1)/2, /2, v1/2| /2, —v/2)

[(u2/2, v2/2, 012, —V'/2| p3f2, — (v + v1)/2)

X(u3/2, — (v +v1)/2, s /2v1/2| 12, —v/2)

1
-2 z a;;,vl auy, (H2/2,v2/2 — o, 12, —V')2| p3f2, — (v 4+ v{)/2 — 0)
x=—1

X (H3/2, — (v +v1)/2 — o, p1/2,v4/2 + a| p/2, —v/2)]
+ (=18, vy o, (H2f2v2/2, /2, V2] p3f2, —(v + v1)/2)

X (p3/2, — (v + v1)/2, 11/2,v1/2| /2, —v/2)

[(12/2, v2/2, W/2, V2| paf2, — (v + v1)/2)

X(pa/2, = (v + v1)/2, p1/2,v112| /2, —v/2)

=2 Y v, O, (122, v2/2 — o, /2, V2] paf2, — (v + v1)/2 — @)

X (Us3/2, —(v +vi)/2 — o, 43/2,v4/2 + a| u/2, —v/2)]
F (=100 v v —v (H2/2,v2/2, /2, =V[2] p3/2, (v — v1)/2)

X (1a/2, (v — v1)/2, 11/2,v1/2| p/2, v/2)

E(p2/2,v2/2, 1)2, —V'[2| p3f2, (v — v1)/2)

X (u3/2, (v — v1)/2, p1/2,v1/2 | /2, v/2)
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1
=2 Y Gy, a5, (B2/2,v5/2 — o, )[2, —V[2| pa/2, (v = v1)/2 — 0))
a=-—1

X(3/2, (v = V)2 — & p1/2,v1/2 + 2| /2,v/2)]}. (AL5)
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